В России создали новую архитектуру нейронных сетей, которая может ускорить и упростить анализ данных в физике, биологии и инженерии. Разработали ее сотрудники Лаборатории геометрической алгебры и приложений Национального исследовательского университета "Высшая школа экономики" (НИУ ВШЭ). Пресс-релиз имеется в распоряжении ИА StolicaMedia.
Множество объектов — от мельчайших частиц и молекул до роботов и физических систем — сохраняют свои характеристики при вращении или зеркальном отражении. Новые эквивариантные нейронные сети умеют учитывать такие закономерности в данных, что делает их крайне полезными для научных и технических задач: от моделирования молекулярных структур до изучения физических явлений и обработки изображений.
Однако у подобных моделей есть минус: высокая точность достигается ценой сложности. Для их работы требуется огромное число параметров, что делает сети громоздкими, требовательными к вычислительным ресурсам и склонными к переобучению, особенно при ограниченном объёме данных.
Сотрудники департамента математики и Лаборатории геометрической алгебры и приложений факультета экономических наук НИУ ВШЭ Екатерина Филимошина и Дмитрий Широков разработали архитектуру GLGENN (Generalized Lipschitz Group Equivariant Neural Networks), которая решает данную проблему. Данная техънология технология помогает моделям учитывать симметрии в данных, при этом значительно сокращая число необходимых параметров. Достичь такого эффекта разработчикам удалось благодаря применению известного математического инструмента — геометрических алгебр Клиффорда — и новому подходу к разделению весов, который опирается на внутренние алгебраические свойства данных.
"Мы хотели построить модель, которая будет умной, но при этом легкой. GLGENN показывает, что эквивариантные нейросети не обязаны быть громоздкими и сложными. Даже с ограниченными данными они могут обучаться эффективно и без потери качества", — рассказала Филимошина.
Модель протестировали на разных задачах — от симуляции физических явлений до работы с геометрическими данными — и она показала результаты не хуже, а местами даже лучше существующих решений. GLGENN работает быстрее и проще за счёт меньшего числа параметров, поэтому её легче использовать на практике.
"Эти результаты могут стать шагом к созданию новых нейросетевых инструментов для науки и техники. Мы уверены, что подход, основанный на геометрических алгебрах, найдет применение в самых разных областях, включая биоинформатику, робототехнику и геоинформатику", — добавил Широков.
Ранее ИА StolicaMedia писало, что во II квартале 2025 года композитный индекс экономического настроения (ИЭН ВШЭ) вырос до 108,0 пунктов. Это отражает улучшение деловых и потребительских ожиданий на фоне продолжающейся положительной динамики ключевых отраслей экономики.